Gravitational-Wave (Astro)Physics: from Theory to Data and Back

Alessandra Buonanno
Max Planck Institute for Gravitational Physics
(Albert Einstein Institute)
Department of Physics, University of Maryland

Spitzer Lectures, Princeton University
May 4, 2018
Spitzer Lectures

• **Lecture I**: Basics of gravitational-wave theory and modeling

• **Lecture II**: Advanced methods to solve the two-body problem in General Relativity

• **Lecture III**: Inferring cosmology and astrophysics with gravitational-wave observations

• **Lecture IV**: Probing dynamical gravity and extreme matter with gravitational-wave observations

(NR simulation: Ossokine, AB & SXS @AEI)

(visualization credit: Benger @ Airborne Hydro Mapping Software & Haas @AEI)
Given current tight constraints on GR (e.g., Solar system, binary pulsars), can any GR deviation be observed with GW detectors?
PN templates in stationary phase approximation: TaylorF2

\[\tilde{h}(f) = A_{SPA}(f) e^{i\psi_{SPA}(f)} \]

\[\psi_{SPA}(f) = 2\pi f t_c - \Phi_c - \pi/4 + \frac{3}{128} (\pi M f)^{-5/3} \{1 + \]

\[- \frac{5\lambda^2}{336\omega_{BD}} \nu^{2/5} (\pi M f)^{-2/3} - \frac{128}{3} \frac{\pi^2 D M}{\lambda_g^2 (1 + z)} (\pi M f)^{2/3} \]

\[+ \left(\frac{3715}{756} + \frac{55}{9} \nu \right) \nu^{-2/5} (\pi M f)^{2/3} - 16\pi \nu^{-3/5} (\pi M f) + 4\beta \nu^{-3/5} (\pi M f) \]

\[+ \left(\frac{15293365}{508032} + \frac{27145}{504} \nu + \frac{3085}{72} \nu^2 \right) \nu^{-4/5} (\pi M f)^{4/3} - 10\sigma \nu^{-4/5} (\pi M f)^{4/3} \} \]

\[\beta = \frac{1}{12} \sum_{i=1}^{2} \chi_i \left[113 \frac{m_i^2}{M^2} + 75\nu \right] \widehat{L} \cdot \widehat{S}_i, \quad \sigma = \frac{\nu}{48} \chi_1 \chi_2 \left(-27 \widehat{S}_1 \cdot \widehat{S}_2 + 721 \widehat{L} \cdot \widehat{S}_1 \widehat{L} \cdot \widehat{S}_2 \right) \]

\[\chi_i = \frac{S_i}{m_i^2} \]

graviton with non zero mass

spin-orbit

1.5PN

1.5PN

2PN

2PN

spin-spin
Bounding PN parameters: inspiral

- GW150914/GW122615’s rapidly varying orbital periods allow us to bound higher-order PN coefficients in gravitational phase.

\[
\tilde{h}(f) = A(f)e^{i\varphi(f)}
\]
\[
\varphi(f) = \varphi_{\text{ref}} + 2\pi f t_{\text{ref}} + \varphi_{\text{Newt}}(Mf)^{-5/3}
\]
\[
+ \varphi_{0.5\text{PN}}(Mf)^{-4/3} + \varphi_{1\text{PN}}(Mf)^{-3/3}
\]
\[
+ \varphi_{1.5\text{PN}}(Mf)^{-2/3} + \ldots
\]

(Abbott et al. PRX6 (2016))

(Arun et al. 06, Mishra et al. 10, Yunes & Pretorius 09, Li et al. 12)

- PN parameters describe: tails of radiation due to backscattering, spin-orbit and spin-spin couplings.

- PN parameters take different values in modified theories to GR.
Some modified theories to General Relativity

<table>
<thead>
<tr>
<th>Theory</th>
<th>(\alpha_{ppE})</th>
<th>(a_{ppE})</th>
<th>(\beta_{ppE})</th>
<th>(b_{ppE})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jordan–Fierz–Brans–Dicke</td>
<td>(-\frac{5}{96}\frac{S^2}{\omega_{BD}}\eta^{2/5})</td>
<td>-2</td>
<td>(-\frac{5}{3584}\frac{S^2}{\omega_{BD}}\eta^{2/5})</td>
<td>-7</td>
</tr>
<tr>
<td>Dissipative Einstein-Dilaton-Gauss–Bonnet gravity</td>
<td>0</td>
<td>.</td>
<td>(-\frac{5}{7168}\zeta_3\eta^{-18/5}\delta_m^2)</td>
<td>-7</td>
</tr>
<tr>
<td>Massive Graviton</td>
<td>0</td>
<td>.</td>
<td>(-\frac{\pi^2 DM_c}{\lambda^2_\gamma(1+z)})</td>
<td>-3</td>
</tr>
<tr>
<td>Lorentz Violation</td>
<td>0</td>
<td>.</td>
<td>(-\frac{\pi^2-\gamma_{LV}}{(1-\gamma_{LV})}\frac{D_{\gamma_{LV}}}{\lambda^2_{\gamma_{LV}}(1+z)^{-1-\gamma_{LV}}})</td>
<td>(-3\gamma_{LV} - 3)</td>
</tr>
<tr>
<td>(G(t)) Theory</td>
<td>(-\frac{5}{512}\dot{G}M_c)</td>
<td>-8</td>
<td>(-\frac{25}{65536}\dot{G}_cM_c)</td>
<td>-13</td>
</tr>
<tr>
<td>Extra Dimensions</td>
<td>0</td>
<td>.</td>
<td>(-\frac{75}{2554344}\frac{dM}{dt}\eta^{-4}(3-26\eta+24\eta^2))</td>
<td>-13</td>
</tr>
<tr>
<td>Non-Dynamical Chern–Simons Gravity</td>
<td>(\alpha_{PV})</td>
<td>3</td>
<td>(\beta_{PV})</td>
<td>6</td>
</tr>
<tr>
<td>Dynamical Chern–Simons Gravity</td>
<td>0</td>
<td>.</td>
<td>(\beta_{dCS})</td>
<td>-1</td>
</tr>
</tbody>
</table>

(Yunes & Siemens 2013)
Bounding phenom parameters: intermediate/merger-RD

\[\varphi(f) = \varphi_{\text{ref}} + 2\pi f t_{\text{ref}} + \varphi_{\text{Newt}}(M f)^{-5/3} \]
\[+ \varphi_{0.5\text{PN}}(M f)^{-4/3} + \varphi_{1\text{PN}}(M f)^{-1} \]
\[+ \varphi_{1.5\text{PN}}(M f)^{-2/3} + \cdots + \beta_2 \log(M f) \]
\[+ \cdots + \alpha_4 \tan^{-1}(a M f + b) \]

- Merger-ringdown phenomenological parameters \((\beta_i \text{ and } \alpha_i)\) not yet expressed in terms of relevant parameters in GR and modified theories of GR.

(Abbott et al. PRL 116 (2016) 221101)
Tests of Lorentz Invariance/Bounding Graviton Mass

- Phenomenological approach: modified dispersion relation. GWs travel at speed different from speed of light. (Will 94, Mirshekari, Yunes & Will 12)

\[E^2 = p^2 c^2 + Ap^\alpha c^\alpha \]
\[\alpha \geq 0 \]
\[\frac{v_g}{c} = 1 + (\alpha - 1)\frac{A}{2}E^{\alpha-2} \]

\[m_g \leq 7.7 \times 10^{-23} \text{eV}/c^2 \]
\[\alpha = 0, \ A > 0 \]
\[\lambda_g = \frac{\hbar}{m_g c} \]

(Abbott et al. PRL118 (2017))
How to test GR and probe nature of compact objects: building deviations from GR & BHs/NSs

• Do current GR waveform models include all physical effects? Not yet.

• Will GR deviations be fully captured in perturbative-like descriptions during merger-ringdown stage? Likely not. (e.g., Yunes & Pretorius 09, Li et al. 12, Endlich et al. 17)

• Need NRAR waveforms in modified theories of GR: scalar-tensor theories, Einstein-Aether theory, dynamical Chern-Simons, Einstein-dilaton Gauss-Bonnet theory, massive gravity theories, etc. (e.g., Stein et al. 17, Cayuso et al. 17, Hirschmann et al. 17)

• Need NRAR waveforms of binaries composed of exotic objects (BH & NS mimickers), such as boson stars, gravastar, etc. (e.g., Palenzuela et al. 17)

• Including deviations from GR in EOB formalism. (Julie & Deruelle 17, Julie 17, Khalil et al. in prep 18)
Probing nature of remnant: quasi-normal modes (QNMs)

• **Deformed/perturbed black holes** emits quasi-normal modes.
• **Measuring** at least two modes will be *smoking gun* that Nature’s black holes are black holes of **General Relativity**.

- **Multiple QNMs** can be measured with future detectors, thus testing **no-hair conjecture** and **second-law black-hole mechanics** \((\text{Israel 69, Carter 71; Hawking 71, Bardeen 73})\).
Measuring BH’s mass and spin from multiple QNMs

\[\Omega_{n\ell m} = M\omega_{n\ell m} = \left(2\pi F_{n\ell m} + \frac{i}{T_{n\ell m}} \right) \text{Im}(\Omega) \]

- By knowing only one frequency and decay time, we cannot identify final BH’s mass and spin.

- Which SNRs are needed to measure multiple modes?
Black-hole spectroscopy by making full use of GW modeling

- **BH spectroscopy: unveiling nature of merger’s remnant**

 (Brito, AB & Raymond 18)

- We employ **parametrized inspiral-merger-ringdown** waveform model (pEOBNR) that includes modes beyond the dominant (2,2).

 • Using pEOBNR we recover **more stringent bounds** on frequency and decay time of GW150914 QNM, than using damped sinusoid model.

Graphical Representation

- **GW150914**:
 - Mass ratio = 6
 - **PEOBNR** compared to different modes (e.g., $|h_{22}|$, $3 \times |h_{33}|$, etc.)

- **Frequency-mass ratio graph**
 - f_{220} (Hz) vs. τ_{220} (ms)
 - Dashed and solid curves represent different models and assumptions (e.g., 1ms, 3ms, 5ms).

Equation and Formulas

- Mass ratio $= 6$
- Frequency f_{220}
- Decay time τ_{220}
Black-hole spectroscopy by making full use of GW modeling

(Brito, AB & Raymond 18)

• Let us assume we **did not find deviations from GR.**
• We bound **quasi-normal mode frequencies & decay times** by combining several BH observations. \(\sigma_{lm} = \sigma_{lm}^{GR} (1 + \delta \sigma_{lm}) \)

![Graph](image1.png)

one event GW150914-like with Advanced LIGO & Virgo

![Graph](image2.png)

GW150914-like events in Advanced LIGO & Virgo

• About **30 GW150914-like events** are needed to achieve errors of **5%** and test no-hair conjecture.
Remnant: black hole or exotic compact object (ECO)?

- If remnant is horizonless, and/or horizon is replaced by “surface”, new modes in the spectrum, and ringdown signal is modified: echoes signals emitted after merger.

(Damour & Solodukhin 07, Cardoso, Franzin & Pani 16)

horizonless objects
wormhole
black hole

boson stars, fermion stars, etc. (e.g., Giudice et al. 16)

(Cardoso et al. 16)
Constraints on speed of GWs & test of equivalence principle

- **Combining GW and GRB observations:**
 \[
 \frac{\Delta c}{c} \simeq c \frac{\Delta t}{D} \quad \text{assuming GRB is emitted 10 s after GW signal}
 \]
 \[
 \frac{\Delta c}{c} \leq 7 \times 10^{-16} \quad \text{assuming observed time delay is entirely due to different speed}
 \]
 \[
 \Delta t = t_{\text{EM}} - t_{\text{GW}}
 \]
 \[
 \Delta c = c_{\text{GW}} - c
 \]
 \[
 -4 \times 10^{-15} \leq \frac{\Delta c}{c} \leq 7 \times 10^{-16}
 \]

- **Strong constraints on scalar-tensor and vector-tensor theories of gravity.**
 (Creminelli et al. 17, Ezquiaga et al. 17, Sakstein et al. 17, Baker et al. 17)

- **EM waves & GWs follow same geodesic. Metric perturbations** (e.g., due to potential between source and Earth) **affect their propagation in same way.**
 \[
 \delta t_s = -\frac{1 + \gamma}{c^3} \int_{r_c}^{r_0} U(r(l)) dl
 \]
 \[
 -2.6 \times 10^{-7} \leq \gamma_{\text{GW}} - \gamma_{\text{EM}} \leq 1.2 \times 10^{-6}
 \]
 \[
 (Shapiro 1964)
 \]
 \[
 \text{gravitational potential of Milky Way outside sphere of 100 kpc}
 \]
 \[
 (Abbott et al. APJ 848 (2017) L12)
 \]
Solving two-body problem in General Relativity (including radiation)

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = \frac{8\pi G}{c^4} T_{\mu\nu} \]

- **GR** is non-linear theory. Complexity similar to QCD.

- Einstein’s field equations can be solved:
 - approximately, but analytically (fast way)
 - exactly, but numerically on supercomputers (slow way)

- **Synergy** between analytical and numerical relativity is crucial.

- **GW170817**: SNR=32 (strong), 3000 cycles (from 30 Hz), one minute.

 last 0.07 sec modeled by AR
 last minutes modeled by NR

(Abbott et al. PRL 119 (2017) 161101)
Analytical waveform modeling for GW170817

- PN waveform model was used for:
 - **template bank**: to observe GW170817
 - **Bayesian analyses**: to infer astrophysical, fundamental physics information of GW170817
Probing equation of state of neutron stars

Neutron Star:
- mass: 1-3 Msun
- radius: 9-15 km
- core density > 10^{14} g/cm3

- NS equation of state (EOS) affects gravitational waveform during late inspiral, merger and post-merger.

(tidal interactions)

(credit: Hinderer)
Probing equation of state of neutron stars

- Tidal effects imprinted on gravitational waveform during inspiral through parameter λ.

- λ measures star’s quadrupole deformation in response to companion perturbing tidal field:

$$Q_{ij} = -\lambda \mathcal{E}_{ij}$$
PN templates in stationary phase approximation: TaylorF2

\[\tilde{h}(f) = A_{SPA}(f) \ e^{i \psi_{SPA}(f)} \]

\[\psi_{SPA}(f) = 2\pi ft_c - \Phi_c - \frac{\pi}{4} + \frac{3}{128} \left(\pi M f \right)^{-5/3} \left\{ 1 + \frac{5\lambda^2}{336\omega_{BD}} \nu^{2/5} \left(\pi M f \right)^{-2/3} - \frac{128}{3} \frac{\pi^2 D M}{\lambda_g^2 (1 + z)} \left(\pi M f \right)^{2/3} \right\} \]

\[+ \left(\frac{3715}{756} + \frac{55}{9} \nu \right) \nu^{-2/5} \left(\pi M f \right)^{2/3} \left(\pi M f \right)^{-2/5} \nu^{-3/5} \left(\pi M f \right) + 4\beta \nu^{-3/5} \left(\pi M f \right) \]

\[+ \left(\frac{15293365}{508032} + \frac{27145}{504} \nu + \frac{3085}{72} \nu^2 \right) \]

\[\cdots - \frac{39}{2} \nu^{-2} \tilde{\Lambda} \left(\pi M f \right)^{10/3} \}

\[\tilde{\Lambda} = \frac{16 \left(m_1 + 12m_2 \right) m_1^4 \Lambda_1 + \left(m_2 + 12m_1 \right) m_2^4 \Lambda_2}{13 \left(m_1 + m_2 \right)^5} \]

\[\lambda = \frac{M_{NS}}{m_{NS}^5} = \frac{2}{3} k_2 \left(\frac{R_{NS} c^2}{G m_{NS}} \right)^5 \]

- Dipole radiation
- Tidal
- Spin-orbit
- Spin-spin
- Graviton with non-zero mass
- Depends on EOS & compactness
- It can be large
Probing equation of state of neutron stars

- Where in frequency the information about (intrinsic) binary parameters predominantly comes from.

 (Harry & Hinderer 17)

- Tidal effects typically change overall number of GW cycles from 30 Hz (about 3000) by one single cycle!
State-of-art waveform models for binary neutron stars

• Synergy between analytical and numerical work is crucial.
Tides make gravitational interaction more attractive
Constraining Love numbers with GW170817

(Abbott et al. PRL 119 (2017) 161101)

\[\Lambda = \frac{\lambda}{m_{\text{NS}}^5} = \frac{2}{3} k_2 \left(\frac{R_{\text{NS}}c^2}{Gm_{\text{NS}}} \right)^5 \]

- Effective tidal deformability enters GW phase at 5PN order:

\[\tilde{\Lambda} = \frac{16 (m_1 + 12m_2)m_1^4\Lambda_1 + (m_2 + 12m_1)m_2^4\Lambda_2}{13 (m_1 + m_2)^5} \]

- With state-of-art waveform models, tides are reduced by \(~20\%\). More analyses are ongoing.

Depends on EOS & compactness

\(|x| \leq 0.05\)

black hole

NS's Love number

more compact

less compact

APR4

SLy

H4

MPA1

MS1

MS1b

more compact

less compact

\Lambda_1

\Lambda_2

\Lambda_2
Boson stars as black-hole/neutron-star mimickers

\[S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi} - \nabla^\alpha \Phi \nabla_\alpha \Phi^* - V(|\Phi|^2) \right] \]

<table>
<thead>
<tr>
<th>Type</th>
<th>Effective Potential</th>
<th>Max. Mass</th>
<th>Compactness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini BS</td>
<td>(\mu^2\Phi^2)</td>
<td>(\frac{85\text{peV}}{\mu}) (M_\odot)</td>
<td>0.08</td>
</tr>
<tr>
<td>Massive BS</td>
<td>(\mu^2\Phi^2 + \frac{\lambda}{2}</td>
<td>\Phi</td>
<td>^4)</td>
</tr>
<tr>
<td>Neutron star</td>
<td>(\mu^2\Phi^2 \left(1 - \frac{2</td>
<td>\Phi</td>
<td>^2}{\sigma_0^2}\right)^2)</td>
</tr>
<tr>
<td>Solitonic BS</td>
<td>(\mu^2\Phi^2 \left(1 - \frac{2</td>
<td>\Phi</td>
<td>^2}{\sigma_0^2}\right)^2)</td>
</tr>
<tr>
<td>Black hole</td>
<td></td>
<td>(\infty)</td>
<td></td>
</tr>
</tbody>
</table>

\(C = \frac{GM}{Rc^2}\)

\((\text{Sennett...AB et al. 17})\)
\((\text{see also Cardoso et al. 17})\)

\(\Lambda = \lambda / M^5\)

- **Black holes:** \(\Lambda = 0\)
- **Neutron stars:** \(\Lambda_{\text{min}} \approx 10\)
- **Boson stars:** \(\Lambda_{\text{min}} \approx 1\)

\(\sigma_0 = 0.05 m_P\)
\(\mu = 10^{-10} \text{ eV}\)

\(\text{Stable} - \text{Unstable}\)

Boson star
The new era of precision gravitational-wave astrophysics

- Theoretical groundwork in **analytical and numerical relativity** has allowed us to build **faithful waveform models** to **search** for signals, **infer properties** and **test GR**.

- We can now **learn about gravity** in the genuinely **highly dynamical, strong field regime**.

- We can probe **matter under extreme pressure** and **density**.

- We have new ways to **explore relationships** between **gravity, light, particles and matter**.

- As for any new observational tool, gravitational (astro)physics will likely **unveil phenomena and objects never imagined** before.
“Astrophysical & Cosmological Relativity” Department

• Current members

• Past members contributed to work presented