EFFECTS OF AGN WIND/RADIATION FEEDBACK ON GALAXY EVOLUTION

Ena Choi
JPO, Thorsten Naab, Rachel Somerville, Michaela Hirschmann
“how does AGN feedback regulate the growth of black hole and its host galaxy?”
Traditional “Thermal” AGN feedback model

- Springel+05, Hopkins, Di Matteo +05, etc.
- SPH code GADGET
- Thermal Feedback with no specified mechanisms for transferring energy to gas particles
- cannot reproduce fast outflow we observe in AGN at high/low redshift

Springel+05
Theoretical Framework: Momentum Feedback

- Consider “outflowing mass rate”
 \[\dot{M}_{acc} = \dot{M}_{inf} - \dot{M}_{outf}, \]

- Wind energy:
 \[\dot{E}_w \equiv \epsilon_w \dot{M}_{acc} c^2 = \frac{1}{2} \dot{M}_{outf} v_w^2 \]

- Wind Momentum:
 \[\dot{p} = \dot{M}_{outf} v_w \]

- The new dimensionless ratio:
 \[\psi \equiv 2\epsilon_w c^2/v_w^2 = \dot{M}_{outf}/\dot{M}_{acc} \]
Theoretical Framework

\[\psi \equiv 2 \epsilon_w c^2 / u_w^2 = \dot{M}_{\text{outf}} / \dot{M}_{\text{acc}} \]

\[\dot{M}_{\text{acc}} = \dot{M}_{\text{inf}} \frac{1}{1 + \psi}, \]

\[\dot{M}_{\text{outf}} = \dot{M}_{\text{inf}} \frac{\psi}{1 + \psi}, \]

\[\dot{E}_w = \epsilon_w c^2 \dot{M}_{\text{inf}} \frac{1}{1 + \psi}, \]

\[\dot{p} = \dot{M}_{\text{inf}} u_w \frac{\psi}{1 + \psi}. \]

\[\epsilon_w = 5 \times 10^{-3} \]

\[u_w = 10,000 \text{ km/s} \]

\[\psi = 9 u_{w,10}^{-2} \]
Effect of “momentum” output

- Including momentum output from AGN drastically increases the effects of feedback

Ostriker, Choi, Ciotti+10
Mechanical AGN Feedback model

- Mechanical Feedback: BAL winds - mass/momentum outflow

- Radiative Feedback: Compton/Photoionization heating by hard X-ray (50-100 keV) component of AGN SEDs (Sazonov+05)

Choi+15
Gas temperature: without AGN vs. with AGN
Observed galaxy size growth

- Compact massive ellipticals at $z \sim 2$
- Strong size growth and stellar density decrease of massive galaxies since $z \sim 2$
- Mass increase by a factor of $\sim 2 / $ Size increase by a factor of ~ 4
- Maybe driven by dry minor merger
Observed stellar-mass surface densities

- core surface stellar-mass density evolution since $z \sim 3$
- Distinct linear relation in log Σ_1 vs. log M
- Constant slopes and scatter but their normalizations decline with time.

Barro+17
Evolution: size vs. stellar mass

- Steeper evolution in AGN models, after the star formation quenched.

- Overall, galaxy sizes are smaller in noAGN model in all redshift.

Choi+17 in prep
Effect of AGN on the stellar component

- **No AGN**
- **With AGN**

- **SFR**
 - **SF radial location**
 - in-situ
 - accreted
 - **SFR**

- **log r/r_{vir}**
 - **Age [Gyr]**
 - **normalized**

- **Mainly affects the Late and In-situ SF**: The ratio of in-situ formed to accreted stars is significantly reduced.

Choi+16
Effect of AGN on the stellar core

- decrease in surface core density from $z=1$ to $z=0$: via minor mergers, via adiabatic expansion (slow stellar mass loss associated with the stellar evolution), and via puffing-up (rapid mass loss by AGN winds)

Choi+17 in prep
Summary: Role of AGN feedback on size growth of massive galaxies

• Simulating red, dead, and extended massive galaxy: AGN feedback is not a primary channel for size growth but... prerequisite.

• It enhances the galaxy size growth via...

 1. (indirect but major) increasing the fraction of “accreted” stars - effect of dry merger increases

 2. (direct but minor) puffing-up by rapid mass loss via AGN-driven winds and adiabatic expansion by slow mass loss

• A quiescent buildup of extended stellar envelopes: Size growth accompanying SF quenching.
More size growth w/ AGN via...

1. grow mainly outside via accreted stars in the outskirts (building envelope): strong positive correlation between size and the fraction of accreted stelar mass

2. Central stellar density drop (center puffing up): reduced central stellar density from $z=2$ to $z=0$