Spring 2018 Graduate Courses

Spring 2018
Numerical Algorithms for Scientific Computing
Subject associations
APC 523 / AST 523 / MAE 507
A broad introduction to numerical algorithms used in scientific computing. The course begins with a review of the basic principles of numerical analysis, including sources of error, stability, and convergence. The theory and implementation of techniques for linear and nonlinear systems of equations and ordinary and partial differential equations are covered in detail. Examples of the application of these methods to problems in engineering and the sciences permeate the course material. Issues related to the implementation of efficient algorithms on modern high-performance computing systems are discussed.
Instructors
Michael Edward Mueller
Spring 2018
Turbulence and Nonlinear Processes in Fluids and Plasmas
Subject associations
AST 559 / APC 539
A comprehensive introduction to the theory of nonlinear phenomena in fluids and plasmas, with emphasis on turbulence and transport. Experimental phenomenology; fundamental equations, including Navier-Stokes, Vlasov, and gyrokinetic; numerical simulation techniques, including pseudo-spectral and particle-in-cell methods; coherent structures; transition to turbulence; statistical closures, including the wave kinetic equation and direct-interaction approximation; PDF methods and intermittency; variational techniques. Applications from neutral fluids, fusion plasmas, and astrophysics.
Instructors
Gregory Wayne Hammett
Spring 2018
Dynamics of Stellar and Planetary Systems
Subject associations
AST 513
Review of hamiltonian mechanics and potential theory. Planetary systems: current surveys and statistics; keplerian elements; restricted 3-body problem; disturbing functions; secular approximations; resonance; tidal effects. Stellar systems: collisionless equilibira and stability; spiral density waves; dynamical frictions and dynamical relaxation; structure of the Galaxy; current surveys; the Galactic Center.
Instructors
Jeremy J. Goodman
Spring 2018
High Energy Astrophysics
Subject associations
AST 520
Selected astrophysical applications of electrodynamics, special and general relativity, nuclear and particle physics. Topics may include synchrotron radiation, comptonization, orbits and accretion in black-hole metrics, radio sources, cosmic rays, and neutrino astropysics.
Instructors
Anatoly Spitkovsky
Spring 2018
Seminar in Observational Astrophysics: Current Research Topics in Astrophysics
Subject associations
AST 542
Students prepare and deliver presentations on selected topics in observational astronomy, and discuss each other's work.
Instructors
Adam S. Burrows
Spring 2018
General Plasma Physics II
Subject associations
AST 552
This is an introductory graduate course in plasma physics, focusing on magnetohydrodynamics (MHD) and its extension to weakly collisional or collisionless plasmas. Topics to be covered include: the equations of MHD and extended MHD, the structure of magnetic fields, static and rotating MHD equilibria and their stability, magnetic reconnection, MHD turbulence, and the dynamo effect. Applications are drawn from fusion, heliophysical, and astrophysical plasmas.
Instructors
Amitava Bhattacharjee
Hantao Ji
Spring 2018
Irreversible Processes in Plasmas
Subject associations
AST 554
Introduction to theory of fluctuations and transport in plasma. Origins of irreversibility. Random walks, Brownian motion, and diffusion; Langevin and Fokker-Planck theory. Fluctuation-dissipation theorem; test-particle superposition principle. Statistical closure problem. Derivation of kinetic equations from BBGKY hierarchy and Klimontovich formalism; properties of plasma collision operators. Classical transport coefficients in magnetized plasmas; Onsager symmetry. Introduction to plasma turbulence, including quasilinear theory. Applications to current problems in plasma research.
Instructors
Matthew Walter Kunz
Spring 2018
Seminar in Plasma Physics
Subject associations
AST 558
Advances in experimental and theoretical studies or laboratory and naturally-occurring high-temperature plasmas, including stability and transport, nonlinear dynamics and turbulence, magnetic reconnection, selfheating of "burning" plasmas, and innovative concepts for advanced fusion systems. Advances in plasma applications, including laser-plasma interactions, nonneutral plasmas, high-intensity accelerators, plasma propulsion, plasma processing, and coherent electromagnetic wave generation.
Instructors
Stewart C. Prager
Allan H. Reiman